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MOTIVATION

Solid-state nanopores have become a new single-molecule tool in biophysics. In comparison to
biological nanopores, they offer many advantages due to their robustness, high stability, tunable
pore size and potential for integration into devices. A precursor in the preparation of a nanopore is
a thin, solid supported membrane of e.g. SiN (thinner than 20 nm) or ultrathin 2D materials like
graphene or MoS2. Translocation of a macromolecule, e.g. DNA through a nm sized pore in such a
thin membrane influences the ionic current of the surrounding electrolyte through the pore and
electrical properties of the membrane itself. Both these transduction mechanisms provide single-
molecule sensing capability and are being tested for an even finer role: DNA sequence readout -
next generation DNA sequencing. Conventionally, nanopores are drilled in these membranes
within a transmission electron microscope which is a tedious and resource intensive procedure. A
latest development in this research field is a simple method of pore formation by the controlled
dielectric breakdown of a membrane immersed in an electrolyte solution. We constructed a setup
for nanopore characterisation and translocation measurements based on a commercial current
preamplifier and some analog devices built in-house. It is also capable of performing the dielectric
breakdown. We present the initial results on lambda DNA translocation events through a
nanopore made in 20 nm SiN membrane by dielectric breakdown.
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NANOPORE RECORDING SETUP
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“DRILLING” BY DIELECTRIC BREAKDOWN
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DNA TRANSLOCATIONS

[http://www.physics.upenn.edu/~robertjo/]
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Conductance change, AG, caused by
DNA translocation (dp,=2.2nm) can be
predicted
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The chip is sealed by silicone
o-rings between two
reservoirs of a PMMA fluidic
cell . Ag/AgCl electrodes are
immersed into both reservoirs,
filled with electrolyte, and
connected to the instruments.
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EVENT IDENTIFICATION AND STATISTICAL ANALYSIS

Current trace of translocation events is loaded to event-fitting algorithm OpenNanopore
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CONCLUSIONS AND FUTURE WORK

Our in-house designed (thus low-cost) setup works at the same level as the commercial one
used at EPFL and those used by other groups working on nanopores. We plan to adjust our
setup in order to improve dielectric breakdown tehnique and test the influence of solvent
\wscosity in order to reduce DNA translocation time.
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